Extensions 1→N→G→Q→1 with N=C22×D9 and Q=C4

Direct product G=N×Q with N=C22×D9 and Q=C4
dρLabelID
C22×C4×D9144C2^2xC4xD9288,353

Semidirect products G=N:Q with N=C22×D9 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×D9)⋊C4 = C22.D36φ: C4/C1C4 ⊆ Out C22×D9724(C2^2xD9):C4288,13
(C22×D9)⋊2C4 = C22⋊C4×D9φ: C4/C2C2 ⊆ Out C22×D972(C2^2xD9):2C4288,90
(C22×D9)⋊3C4 = C2×D18⋊C4φ: C4/C2C2 ⊆ Out C22×D9144(C2^2xD9):3C4288,137

Non-split extensions G=N.Q with N=C22×D9 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×D9).C4 = C36.48D4φ: C4/C1C4 ⊆ Out C22×D9724+(C2^2xD9).C4288,31
(C22×D9).2C4 = D18⋊C8φ: C4/C2C2 ⊆ Out C22×D9144(C2^2xD9).2C4288,27
(C22×D9).3C4 = C2×C8⋊D9φ: C4/C2C2 ⊆ Out C22×D9144(C2^2xD9).3C4288,111
(C22×D9).4C4 = M4(2)×D9φ: C4/C2C2 ⊆ Out C22×D9724(C2^2xD9).4C4288,116
(C22×D9).5C4 = C2×C8×D9φ: trivial image144(C2^2xD9).5C4288,110

׿
×
𝔽